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ABSTRACT

Massive dataset sizes can make visualization difficult or impossible. One solution to this problem is to divide a
dataset into smaller pieces and then stream these pieces through memory, running algorithms on each piece. This
paper presents a modular data-flow visualization system architecture for culling and prioritized data streaming.
This streaming architecture improves program performance both by discarding pieces of the input dataset that
are not required to complete the visualization, and by prioritizing the ones that are. The system supports a
wide variety of culling and prioritization techniques, including those based on data value, spatial constraints, and
occlusion tests. Prioritization ensures that pieces are processed and displayed progressively based on an estimate
of their contribution to the resulting image. Using prioritized ordering, the architecture presents a progressively
rendered result in a significantly shorter time than a standard visualization architecture. The design is modular,
such that each module in a user-defined data-flow visualization program can cull pieces as well as contribute to
the final processing order of pieces. In addition, the design is extensible, providing an interface for the addition
of user-defined culling and prioritization techniques to new or existing visualization modules.

1. INTRODUCTION

Scientists use computational simulations and sensors to model, study, and understand complex processes. Visu-
alization systems are used to process and extract meaningful information from the extremely detailed datasets
generated by these tools. The massive sizes of these datasets can make processing difficult or even impossible on
a desktop computer. One solution to this problem is to divide a massive dataset into smaller pieces on disk and
then stream these pieces through memory, running the visualization algorithms on each piece. This technique,
called out-of-core processing, assumes that the data is larger than memory and therefore must be incrementally
processed. The process of data streaming places an emphasis on incremental processing, regardless of where the
data is stored. A key aspect of out-of-core and streaming algorithms is that once the data is divided into pieces,
both approaches allow decisions to be made about which pieces are operated on and in what order.

The research contribution of this paper is a novel culling and prioritized data-flow streaming visualization
architecture that supports a broad range of visualization operations and programs. Culling and prioritization
improve a user’s visualization experience by producing results faster (by skipping the processing pieces that do
not contribute to the final result) and by progressively ordering the display of pieces based on a user-defined
prioritization metric.

2. RELATED WORK
2.1. Out-of-core algorithms and systems

Researchers have developed out-of-core visualization algorithms for streamlines on unstructured grids, surface
simplification, and isosurfacing.*17-2° In addition, Vitter presents a general introduction to out-of-core/streaming
algorithms.?” These algorithms typically read the data from disk, execute the algorithm, and write the data
back to disk incrementally. The resulting data is then rendered from disk. One downside to this approach
is the additional I/O required. Ideally, these algorithms would be incorporated into an out-of-core/streaming
infrastructure that avoids intermediate I/0.

The algorithms and systems described above focus primarily on the visualization of scientific data. Other
researchers have focused on out-of-core rendering for architectural walkthroughs and the display of massive

Visualization and Data Analysis 2007, edited by Robert F. Erbacher, Jonathan C. Roberts, Matti T. Gréhn, Katy Bérner
Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 6495, 649501, © 2007 SPIE-IS&T - 0277-786X/07/$18

SPIE-IS&T/ Vol. 6495 64950I-1

Downloaded from SPIE Digital Library on 31 Mar 2010 to 192.12.184.2. Terms of Use: http://spiedl.org/terms



terrain datasets. There are many techniques for culling and ordering data for rendering. Culling techniques are
typically based on the view frustum and object occlusion, while ordering techniques often include view dependent
display.® The architecture presented in this paper supports culling and ordering of pieces using these techniques.
Funkhouser et al. present an out-of-core rendering system for interactive walkthroughs.'! Correa et al. describe
the iWalk system, an out-of-core rendering system that uses multi-threading to render, compute visibility, and
read from disk simultaneously in order to achieve interactive performance.” The iWalk system builds an octree
representation of the model on disk for faster access. Lindstrom et. al built a terrain system that supports a
data indexing scheme for fast access and user-defined error metrics.'® Out-of-core rendering systems are typically
applied to static models and can therefore use a preprocessing optimization step to organize the data for efficient
access and rendering. This allows portions of the data to be excluded from processing by identifying their
visibility from selected viewpoints. Out-of-core visualization systems, on the other hand, are used to render
dynamic data, such as interactive requests for a specific isocontour value; this often makes the optimizations
used for static models unworkable.

Some algorithms and systems combine specific culling and prioritization functionality. For example, Livnat
and Hansen'® describe an algorithm for combining view-dependent rendering and efficient isosurface extraction.
Chiang et. al describe a system that supports both out-of-core visualization and rendering functionality by
combining a parallel out-of-core isosurface extraction algorithm with an out-of-core volume rendering technique
for unstructured grids.> Gao and Shen present a parallel, view-dependent isosurface extraction algorithm that
incorporates occlusion culling.'? In contrast to the algorithms and systems described above, our work goes beyond
implementing a specific combination of culling and prioritization functionality by creating an general-purpose
visualization architecture that supports combining culling and prioritization functionality.

2.2. Importance-driven systems

The QSplat rendering system, which uses different size bounding spheres to provide a multi-resolution, graphical
representation of an object, has been extended to progressively render data streamed over a network.2’»22 The
system orders the streaming of data based on a measure of its importance. This measure incorporates the
granularity of the data (i.e. the current level of detail), the projected screen size, and presentation order. Viola,
Kanitsar and Groller present system that modifies the volume rendering process such that user selected objects
are visible despite view changes and occlusions.? Objects are assigned an importance value before program
execution. In comparison to the fixed metrics in the systems described above, the architecture presented allows
any algorithm in the visualization pipeline to independently contribute to a dynamic, global metric of the
importance of each individual piece to the final result.

2.3. Data-flow based visualization systems

In general terms, our architecture is similar to data-flow based visualization systems such as IBM Data Ex-
plorer(DX),* AVS? and SCIRun.2? Support for data streaming (i.e. the ability to incrementally process pieces of
a dataset), a key building block of our architecture, is not supported by these systems. Moran and Henze present
a visualization system called DDV that supports demand driven creation and visualization of derived fields.!”
DDV uses a field data structure to identify data elements that are required by the associated algorithm. These
data structure/algorithm pairs are composed into a program as a data flow graph. Childs et al. describe the Visit
system® and introduces the idea of a contract between the modules in a demand-driven data-flow visualization
program. Modules can modify the contract (i.e. a data structure — essentially a name to data element map),
during execution, to coordinate system features such as the generation of ghost data, to cull data and when to
use static or dynamic load balancing. Ahrens et al. and Law et al.>'* present extensions to the Visualization
Toolkit (VTK)?? to support data streaming for structured and unstructured grids. Our work shares the demand-
driven data-flow streaming features of DDV, Visit and VTK. Our architecture and the Visit architecture share
a similar general approach for culling data. Our architecture is distinct from DDV, Visit and the existing VTK
streaming architecture by offering the prioritization of streamed pieces. It also provides a single framework for
incorporating culling and prioritization methods; including spatial culling, data culling, occlusion culling and
view dependent prioritized rendering all in the same general-purpose visualization architecture.
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3. DESIGN
3.1. Overview of a demand driven data-flow streaming based architecture

Our design builds upon a demand driven data-flow streaming architecture. In such an architecture, a program
is created by composing functional modules together into a data-flow pipeline. The program is executed in a
demand-driven manner, that is, data requests are propagated up through the modules in the pipeline to the
data source, and the computed results flow back down the pipeline to create the final result. Data streaming
requires:*

e The data is separable. This means the dataset can be broken into pieces. Ideally, each piece is coherent
in geometry, topology, and/or data structure. The modules in this architecture must be able to correctly
process pieces of data.

e The data is mappable. This means we must be able to determine what portion of the input data is required
to generate a given portion of the output.

e The results be output invariant. That is, the results should be the same, independent of the number of
pieces, and independent of the execution mode (i.e., single- or multi-process). This means the proper
handling of pieces that may overlap on their boundaries.

To implement these requirements, a demand-driven preprocessing step is run when data is requested. This
step gathers and computes information about the input and output data of each module in the pipeline. A
wide range of information is returned. Typically, properties such as the native data type, number of scalar
components, and the scalar and spatial ranges are computed. After the preprocessing step completes, a demand-
driven execution step is run. Using the information gathered during the preprocessing step, data is instantiated
and then the modules are executed.

When using streaming, the demand-driven preprocessing step is run for each piece. The piece extents and
boundary data are computed for each piece by the preprocessing steps. For structured data, the piece data
is represented by its spatial extents. For unstructured data, the data is represented as piece number M of N
possible pieces. Modules that process structured data and output unstructured data use a partitioning algorithm
to divide the structured data into the requested number of pieces. Ghost cells are used to handle cross-piece
communication and the number of layers of ghost cells is computed as part of the preprocessing step. Figure
1 presents a collection of pseudo-code descriptions of how a standard demand-driven data-flow architecture is
modified to cull and prioritize pieces.

For example, suppose we have a program with an image reader, contour, and render modules. If the number
of pieces is set to four within the renderer, then four preprocessing steps will be run. During each step the
renderer propagates a request for an unstructured piece, in the form of a piece number, up the pipeline. The
contour module, which receives structured data and outputs unstructured data, converts from the given piece
number to a specific spatial extent (e.g. one quadrant of the output image) using a data partitioning algorithm.
During the associated execution step, the contour module receives a piece from the reader, and processes the
data creating contours within the assigned extent. This process continues until the remaining three pieces have
been completed.

In order to stream data from disk, the reader module needs to be able to read and return individual pieces.
One option is to build a custom reader that can extract each piece from a single file. This option has the
advantage that the number of pieces can be changed at runtime. The main disadvantage is that writing such a
reader is complicated, especially for complex data structures such as unstructured grids. f

*Note that these requirements are met by the streaming architecture of the Visualization Toolkit. Most imaging,
visualization and rendering modules in VTK currently can stream data as part of a visualization pipeline. In this paper,
we extend the VTK streaming architecture to support culling and prioritization. See®!* for more details on VTK’s
streaming architecture.

TParallel data partitioning algorithms provide similar functionality, splitting up a dataset stored in a single memory
unit into multiple memory units for distributed processing on multiple processors. Modifying existing data partitioning
algorithms to solve the file splitting problem we described above is an avenue we will explore in future work.
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for piece = 1 to number_of_pieces || for piece = 1 to number_of_pieces || for piece = 1 to number_of_pieces

preprocessing step() preprocessing step() preprocessing_step()
execution_step() cull_value = culling_step() cull_pr_value = cull_and_pr_step()
it (cull_value > 0) if (cull_pr_value > 0)
execution_step() push(prioritized_list,

cull_pr_value, piece)

while length(prioritized_list) > 0
piece = pop(prioritized_list)
execution_step()

Streaming With culling With culling and prioritization

Figure 1. Evolution of psuedocode showing a streaming architecture that includes culling and prioritization

The option used in this paper, is to read the data and save each piece to its own file before the visualization
process starts. In addition to storing the piece data, the data range and spatial extents of the piece are computed
and stored as meta-data associated with each file. This step avoids the need to compute the range during the
execution of the pipeline. This option has the advantage of being simpler to implement, but has the disadvantage
of having to select a specific number of pieces before the program is run. Another possible disadvantage is that
I/O performance can significantly degrade when reading and writing many small files. This process needs to
occur only once, before the visualization pipeline is run.

3.2. Adding culling and prioritization to the demand driven data-flow streaming based
architecture

For each piece, once the preprocessing step is complete, all the information necessary to run the execution
step is known. The key idea in this paper is that the preprocessing information can be used throughout the
visualization pipeline to cull and order pieces. While culling and prioritizing are unified in this architecture we
will first consider culling.

3.3. Adding a culling step

In order to cull pieces an additional step is added that runs after the preprocessing step. The culling step uses
the preprocessing information to set a value to zero if a piece is to be discarded and one if it is not (Our particular
use of zero and one as culling flags will be discussed in Section 3.4.) Each module can provide its own unique
culling method. For example, a clipping module can cull pieces whose spatial extent does not intersect the clip
area, or a rendering module can cull pieces not within in the view frustum.

As with the preprocessing step, the culling step is demand-driven. A culling request is propagated up through
the modules in the pipeline to the data source and culling information flows back down the pipeline. Specifically,
for each module, an independent culling value is calculated. If any module in the pipeline chooses to discard a
piece, all modules in the pipeline will discard it as well. This is accomplished by propagating a zero culling value
down the pipeline. All modules that do not define a specific culling method use a default method that does not
affect the culling process. This culling method always returns a value of one unless it is propagating a zero value
down the pipeline. The pseudocode in the center box of Figure 1 shows the addition of a culling step.

Culling methods are based on the spatial location or data values of a piece. In the list below, we describe a
collection of culling steps that are spatial or value based. It is important to note that this list is not meant be
exhaustive, rather it simply illustrates the types of culling operations that are possible.

1. Based on spatial location

(a) Spatial Clipping: A clipping module clips a dataset with a surface, retaining any cells that fall on the
retaining side of the surface. In this case, the module’s culling method removes pieces whose spatial
bounds fall outside of the retained region.
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(b) Cutting: A cutting module cuts through a dataset with a surface and then displays the interpolated
values on the surface. The culling method discards pieces that do not intersect with the cutting
surface.

(¢) Probing: Probing samples a dataset with a set of points (possibly a single point, points along a line,
on a plane, or in a volume). The resulting points can then be graphed or visualized. For this case,
the culling method will remove pieces that do not contain any probe points.

(d) Frustum Culling: The frustum culling method removes pieces that are not within the viewing frustum.
This method is part of the rendering module.

(e) Occlusion Culling: The occlusion culling method discards pieces that are not visible because they
are occluded by other objects in the scene. This step makes use of OpenGL’s hardware-accelerated,
occlusion culling extension.'® To run the occlusion test, writes to the color and depth buffers are
disabled. Next, the bounding box of the piece is rendered. If the bounding box is not visible, none
of the geometry representative of the piece will be visible, and therefore the piece is culled. After the
test completes, the color and depth buffers are re-enabled.

2. Based on data value

(a) Contouring: A contouring/isosurfacing module creates a boundary line or surface that follows one or
more constant scalar values known as the contour values. The culling method compares the data range
of the values in a piece with the contour values to see if they intersect. If there are no intersections,
the piece is discarded. The data range of a piece is stored on disk as meta-data and is available as a
result of the preprocessing step.

(b) Thresholding: A thresholding module selects the cells within a dataset based on whether a cell’s data
value falls within a given range. If the data range for a piece falls outside of the threshold range, the
piece is culled.

3.4. Adding a prioritization step

Our architecture also allows for the prioritization of pieces as a simple extension of the culling process. Prioriti-
zation is useful to provide early feedback to the user about a visualization before it completes. Users can make
decisions, such as stopping a visualization and changing the viewpoint, or changing a visualization parameter im-
mediately instead of having to wait for completion. This is especially important for distance applications where
visualizations may take significantly longer to complete due to data transfer times over a wide-area network.

Prioritization of pieces is implemented by extending the notion of culling from a boolean value of zero or one
to a continuous value between zero and one. A culling value of zero is still used to indicate that a piece should
be discarded. However, values greater than zero indicate the priority of a piece. In this case, pieces should be
processed in the order given by this numeric value; with higher values indicating higher priority. For example,
after the preprocessing step is complete, the spatial location of a piece is known. This location information can
be used to assign a view dependent priority P, where 0.0 < P < 1.0, such that pieces are processed in order
based on their distance from the viewer.

Priorities are multiplied together to provide a weighting of the priorities assigned by different modules. For
example, the priority of a piece can be based on an estimate of the total number of polygons combined with
a view dependence prioritization. Pieces that are estimated to generate a large number of polygons, and are
closest to the viewer, would be processed first.

The default culling method for modules continues to work with prioritization as it assigns a value of one to
all pieces. With a priority of one, by default, a module will not change the current priority assigned by other
modules in the pipeline (i.e. multiplying the priority by one does not change the priority). Note that multiplying
by zero propagates the message to cull a piece. The psuedocode in the box on the right hand side of Figure 1
shows the addition of a prioritization step to the algorithm.

The prioritization of pieces can be based on spatial location or the data values within the piece. In the list
below, we describe a collection of prioritization steps that are spatial or value based. Once again, this list is not
meant to be exhaustive, but instead a illustrative of the types of operations that can be used to assign priorities.
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1. Based on spatial location

(a) View Dependent Ordering: View dependent ordering prioritizes pieces based on their distance from
the camera. In this situation, pieces located closer to the camera receive a higher priority.

(b) Cutting: The culling algorithm presented in Section 3.3 can be extended to also provide a priority.
The culling algorithm simply checks if the bounding box of the piece is intersected by the cutting
surface. A prioritized algorithm prioritizes based on how much the surface intersects the bounding
box.

2. Based on data value

(a) Color by Scalar Value: A scalar color mapping module maps values to colors. For example, the
opacity channel of the mapping could be used to order pieces (i.e. a measure of piece opacity could be
calculated based on a histogram of the data values and the opacity mapping) and the estimate of the
most opaque pieces could be rendered first. Similarly, a histogram could be used to display the piece
values from the maximum to minimum scalar color mapping (e.g. from warm to cold temperature
values).

The design of our architecture has similarities to Livhat and Hansen’s work'® on view dependent isosurface
extraction. Our architecture differs because it supports the creation of programs that can include additional func-
tionality beyond view dependence, hardware-accelerated occlusion culling and isosurface extraction. Specifically
our architecture supports a broad range of culling and prioritization tasks; for example, user-defined programs
using our architecture can include other visualization operations such as clipping, cutting and probing and com-
bine alternative prioritization metrics such as coloring by scalar value. Our architecture also has similarities to
Klosowski and Silva’s work on the prioritized-layered projection algorithm (PLP).!3 In their work, a geometric
dataset is partitioned into cells and a priority, based on how likely a cell is to be visible, is assigned to the cell.
This priority is used to order the rendering of cells. As the rendering of cells progresses, hardware-accelerated
occlusion culling is used to determine the visibility status of the geometry. Our architecture differs from PLP
because it incorporates rendering prioritization methods with visualization and rendering culling algorithms in
a general-purpose visualization architecture.

4. IMPLEMENTATION

Our culling and prioritization streaming architecture is implemented as part of the Visualization Toolkit?? library
and released as part of VTK version 5.0. To support these capabilities new meta-information keys were added
to the key-value based architecture VTK uses for handling pipeline operations. The first of these new keys was
added to create a new pass of the pipeline called REQUEST_UPDATE_EXTENT_INFORMATION. This pass
occurs after requesting the overarching meta-information about the data and after an update extent (piece) has
been specified. Its purpose is to gather meta-information specifically about a requested piece of data. One of
the values that propagates downstream on this pass is the FIELD_RANGE key. This key provides the scalar
range of the data arrays at each step in the visualization pipeline prior to actually reading or processing them.
It is worth noting that these scalar ranges may change as the data passes from filter to filter. Another new key
propagated during this pass is the priority of the piece specified using the PRIORITY key.

In practice, when data is written out into pieces using VI'K’s XML file format, the files will automatically
include meta-information about the ranges of each piece’s data arrays. When opening a data file the number
of pieces is read in first. Then during the next phase of pipeline processing, information about specific pieces
can be requested. This information is read from the data file and then adjusted and manipulated by each filter
in the pipeline. For example, the contour filter in VTK considers the FIELD_RANGE of the data array it is
contouring. If the contour value is not included in the range then the priority for that piece is set to zero.
Even if the contour value does intersect the range a subsequent filter downstream may lower or zero out the
priority based on a different metric. In this manner priorities and culling are performed not independently by
each filter, as most out of core techniques are limited to, but by all the filters negotiating together. While only
a few implementation keys have been discussed, the key-value nature of the architecture supports easily adding
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new meta-information that can be taken into account in determining priority and culling without any changes
to the core code base.

Although the extensions to cull and prioritize data appear straightforward (i.e. as shown in Figure 1) figuring
out how to add this functionality to the VTK architecture with a minimal impact was not. For a full-featured and
complex architecture like VTK it is of great benefit to extend the system in significant way (i.e. allowing VTK
programs to cull data and progressively prioritize the display of results) without adding significant additional
complexity.

5. RESULTS

In this section, we report results of using our architecture for data culling and prioritized streaming for different
types of input data: structured, out-of-core and unstructured datasets. In each case, the same basic methodology
is applied to each type of data. The underlying architecture is not modified only how the input dataset is
subdivided into pieces is changed. All tests were run on a Dell Precision 450 with a 2.8 GHz Intel Xeon
processor, 512 KB of cache, 2 GB of RAM, and an NVIDIA Quadro FX 1000 graphics card.

5.1. Structured Dataset

The dataset used in this section is a simulation result from the Terascale Supernova Initiative (TSI).?* The
TSI team is modeling the mechanisms responsible for driving core collapse supernovae. The simulation runs
on a three-dimensional structured grid with dimensions of 320 x 320 x 320 and generates multiple variables
including entropy, density and energy. The supernova data is used to illustrate how the architecture performs on
a reasonably large data set that a scientist would process on their desktop computer. We did not use a dataset
that exceeded the memory of the test machine because we wanted to compare the execution times with the
standard VTK architecture.

5.1.1. Data culling

The first test reports the performance improvement achieved when using the new streaming architecture for data
culling. A VTK program was created to read the entropy and density fields, contour the entropy field with a
contour value of 0.07, color the contour by density, clip the resulting contour geometry, and render this result.
Table 5.1.1 shows the total program time in seconds as well as individual times to read, contour, clip, and render
the data using the standard architecture versus using the streaming architecture described in this paper. This
visualization pipeline makes use of the culling method in the contour module (Section 3.3, list 2, item a), the
clipping module (Section 3.3, list 1, item a) and the render module (Section 3.3, list 1, item e). In addition, view
dependent ordering is used (Section 3.4, list 1, item a).

Number | Read | Contour | Clip | Render | Total
Read | Contour | Clip | Render | Total Of Time Time Time | Time | Time

Time Time Time | Time | Time Pieces
Stnd. | 21.65 28.55 1.66 0.23 52.29 32 17.61 23.26 1.33 0.34 42.85
Arch. 64 12.56 16.65 1.37 0.35 31.28
Strm. 5.41 7.21 1.18 0.59 16.25 128 10.98 14.54 1.40 0.47 28.09
Arch. 256 7.83 10.38 1.23 0.50 21.07
Spdup | 4.00 3.95 1.41 0.39 3.22 512 5.41 7.21 1.18 0.59 16.25
1024 4.73 6.38 1.26 0.86 16.73

Table 1. Performance in seconds on a 320° Table 2. Performance in seconds with the streaming

dataset with the standard and streaming architec- architecture when varying the number of pieces. The

tures. For the streaming architecture, the dataset is  visualized result is the same regardless the number

split into 512 pieces. of pieces used and is shown in the upper left corner
of Figure 2.
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Table 1 shows that total program performance is improved by a factor of three. The modules are able to cull
away 395 out of 512 pieces. The contour culling step culls 336 pieces, the clipping culling step culls an additional
48 pieces and the occlusion culling step culls an additional 11 pieces; leaving 117 pieces out of 512 that are read
from disk, contoured, clipped and rendered. Notice that rendering time increases since we are rendering many
intermediate images (i.e. each time a piece is generated it is composited to the final result) but the standard
architecture renders only once. The visualized result is shown in the upper left corner of Figure 2 and a sequence
of intermediate results is shown in Figure 4.

It is important to recognize that the effectiveness of each culling step depends on how many pieces are culled
by previous modules. For example, only a small number of pieces are occlusion culled in the previous example.
This is because the contour and clipping module were very effective at culling pieces. We ran a set of tests that
use the same data but vary the clip plane value such that it is placed at equidistant points along its normal
from one side of the dataset’s bounding box to the other side. The streaming architecture consistently improves
performance over the entire range of clip values, but for each clip value different culling modules are more effective
than the others. For example, when the dataset is completely clipped away the clipping module culls all the
pieces. When none of the dataset is clipped, the occlusion culling module culls many pieces on the far-side of
the supernova contour. This result highlights the benefit of having multiple modules in a visualization pipeline
independently culling pieces.

The second test reports the performance difference when using the streaming architecture for data culling
with a varying number of pieces. The same program used to generate the results in Table 1 is used to generate
the results in all figures and tables in this section.

Notice in Table 2 that as the number of pieces increases from 32 to 512 pieces, the total execution time
decreases. We expect that increasing the number of pieces tightens the range of the spatial extents and range of
data values in each piece allowing for more culling to occur. For the supernova dataset, we measured the mean
size of the scalar range and the spatial bounding volume for 32 to 1024 pieces. As the number of pieces increases
by a factor of two the average mean size of the scalar range and bounding volume decreases by approximately
a factor of two confirming our expectations. At some point, increasing the number of pieces will not provide
additional performance improvements because of the overhead associated with processing additional pieces. For
example, the total execution time increases at 1024 or more pieces due to this overhead.

In the streaming architecture the total program time is proportional to the number of pieces actually pro-
cessed. Many other modules described in Section 3.3, such as the cutting (Section 3.3, list 1, item b) and probe
modules (Section 3.3, list 1, item c), will also significantly reduce the number of pieces that need to be processed.
For example, consider a volume consisting of n pieces on each side for a total of n® pieces. After the culling step
of the cutting module runs there will be approximately n? pieces left: the pieces that intersect the cut plane. If
a line probe module processes the data volume, the culling step would then reduce the number of pieces from n?
to approximately n; the pieces that intersect the probe line.

5.1.2. Prioritization

The next test examines the use of the streaming architecture to display results progressively. This is accomplished
by displaying an intermediate image after each piece is processed. An image-accuracy metric is used to measure
the quality of these intermediate images. This metric counts exact pixel matches between each intermediate
image and the final result image created by the standard architecture. This result is then divided by a count
of exact pixel matches between the starting image (a blank image composed of all background pixels) and the
final result image to scale the metric between 0 and 100. A value of 0 for the metric means that there are no
non-background pixel matches between the test image and final image and a value of 100 means that the images
are an exact match. Values in between describe a percentage of the number of non-background pixels that are an
exact match. Figure 3 plots a value for each intermediate result where the x axis is the elapsed time for the image
generated and the y axis is the image accuracy. This is done for six different camera views with a prioritized
ordering shown in dark blue and a random ordering shown in pink. Figure 2 shows the rendered results for the
six camera views. A prioritized ordering provides an increase in image accuracy over a random ordering for four
of the six views. The two views that have similar behavior to the random ordering are for azimuth values of 240
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Figure 2. Six views of the supernova from left to right, top

to bottom the camera azimuth values are 0,60,120,180,240 Figure 3. Image accuracy versus time for six views shown

and 300 degrees. in Figure 2 with prioritized ordering (in dark blue with X
icons) and a random ordering (in pink with O icons).

and 300 degrees. These views do not have much depth complexity and therefore a view dependent ordering does
not provide an improvement.

For the view shown in Figure 2 with an azimuth value of 0, image accuracy increases very quickly. This is
because with a view dependent ordering the surface of the supernova closest to viewer is computed first and
immediately increases image accuracy. This surface also occludes additional details in other pieces. Figure 4
shows results that are 25%, 50% and 75% accurate. These views are computed in 2.4%, 3.8% and 7.7% of the
time it takes the standard architecture to generate the final image.

Figure 4. Visualized supernova results that are 25%, 50% and 75% accurate.

5.1.3. Overhead Costs

It is important to consider the total cost of the streaming architecture as compared to that of the standard
architecture. There are three sources of overhead:

1. The cost of splitting the files into multiple pieces before program execution. This occurs once before the
visualization program is run. It takes three minutes to split the file into 512 piece files. We consider the
initial cost of a few minutes reasonable since many visualizations are typically run on one dataset and
significant performance improvements result from this file organization.

2. The cost of running the culling and prioritization step. For the test program the overhead of the culling
and prioritization steps is only 6.5% of the total execution time. This time is primarily due to reading the
scalar range and spatial extent meta-data from disk.
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3. The cost of running multiple pieces through the pipeline. We ran a test to compute the cost of running
multiple pieces through the pipeline. Specifically, the worst case for the streaming architecture occurs
when every culling and prioritization step was run and every piece was processed. The total time is only
increased by about four seconds, or a 7% increase over the total time for the standard architecture. In
practice, we expect the need to process all pieces is rare and therefore the overhead costs will be amortized
by the performance gains from culling pieces.

5.2. Out-of-core Dataset

In this section we test the ability of our architecture to handle out-of-core data. We used the Visible Woman
data set from the National Library of Medicine to test our system. In its original form, the Visible Woman
dataset is 864 MB, but to stress the architecture we upcast the dataset from 16 bit to 64 bit integers, effectively
quadrupling the size of the dataset to 3.375 GB. At this size, standard VTK is unable to the load the data into
core memory. It is important to note that the input dataset is structured and the techniques used in the previous
section were used to partition the data.

In our out-of-core test, we isosurface the data, clip the model in half and render the data for two common
isosurface values 600.5 (skin) and 1224.5(bone). Table 3 shows the performance results and Figure 5 the resulting
visualization of the skin isosurface.

Number | Time (s) | Time (s) Number | Pieces | Total (s)
of Pieces | for 600.5 | for 1224.5 of Pieces | Culled Time
128 208.38 149.03 1 0 70.56
256 192.32 141.81 8 2 28.22
512 172.38 118.82 16 6 23.40
1024 119.79 102.90 32 17 16.64
2048 112.94 97.36 64 40 15.36
4096 104.65 94.81 128 89 14.58
8192 61.57 83.26 256 193 12.73
16384 103.72 76.73 512 409 12.90
32768 125.86 85.52 1024 861 13.11
Table 3. Out-of-core timings for creation of the Table 4. Timings of the atmospheric simulation
Visible Woman skin and bone isosurfaces with our data with density isosurface value of (1.01).
architecture.

Figure 5. Visible Woman skin isosurface (600.5).

Figure 6. The shock cone that results from the space shut-
tle traveling at supersonic speeds. The isosurface is colored
by stagnation energy.

As the piece count increases, program performance improves. The speedup results from a reduction in
read time, rendering time, and isocontouring time. Culling does incur an overhead from reading metadata and
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running culling operations. There is a point of diminishing returns where the overhead increases significantly
that additional speedup does not take place. This occurs at 8192 pieces in the skin isosurface and 16384 pieces
in the bone isosurface. Increasing the piece count beyond that point does not create any additional speedup.

5.3. Unstructured Dataset

In this section we apply our architecture to the problem of efficiently processing an unstructured data. The
unstructured dataset results from a simulation of a space shuttle traveling through the atmosphere. The resulting
2.7M tetrahedral mesh is partitioned into pieces using a recursive spatial bisection method. Table 4 shows the
total time necessary to process (read, isosurface and render) the data.

6. CONCLUSIONS AND FUTURE WORK

This paper presented a general purpose visualization architecture that incorporates advanced culling and prior-
itization features based on data value and spatial location. This architecture also enables advanced rendering
features such as view dependent ordering and occlusion culling. Significant performance improvements have been
demonstrated for real-world visualization programs. This architecture provides a framework for researchers to
incorporate additional advanced streaming features as they are presented in the literature.

There are a number of directions for future research with this architecture. The first is the incorporation and
characterization of performance of new culling and prioritization steps. In this work we’ve focused primarily on
optimizing performance. Prioritization steps that focus on content (i.e. getting the most relevant information to
the user quickly) are also of interest. The second direction is the incorporation of more complex data structures
into the architecture. Currently, work is in progress on incorporating overset and adaptive mesh refinement
grids into VTK. This includes having these grids leverage the streaming architecture. Once these grids are fully
integrated, additional efficiencies can be realized by adding culling and prioritization steps that are aware of the
properties of these new data structures. For example, with an octree data structure, significant spatial portions
of the grid can be culled quickly by culling data elements at the top of the octree.
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